Enforcing Idempotency in Neural Networks

Nikolaj Banke Jensen! Jamie Vicary >

Abstract

In this work, we propose a new architecture-
agnostic method for training idempotent neu-
ral networks. An idempotent operator satisfies
f(x) = f(f(x)), meaning it can be applied itera-
tively with no effect beyond the first application.
Some neural networks used in data transformation
tasks, such as image generation and augmenta-
tion, can represent non-linear idempotent projec-
tions. Using methods from perturbation theory we
derive the recurrence relation K’ + 3K? — 2K3
for iteratively projecting a real-valued matrix K
onto the manifold of idempotent matrices. Our
analysis shows that for linear, single-layer MLP
networks this projection 1) has idempotent fixed
points, and 2) is attracting only around idempo-
tent points. We give an extension to non-linear
networks by considering our approach as a sub-
stitution of the gradient for the canonical loss
function, achieving an architecture-agnostic train-
ing scheme. We provide experimental results for
MLP- and CNN-based architectures with signif-
icant improvement in idempotent error over the
canonical gradient-based approach. Finally, we
demonstrate practical applications of the method
as we train generative networks on MNIST and
CelebA successfully using only a simple recon-
struction loss paired with our method.

1. Introduction

Using neural networks as data augmentation tools is becom-
ing more widespread in areas such as signal processing and
generative artificial intelligence. In particular, networks of
the form f : X — X, mapping data within the same space
X, are frequently used in image augmentation (Lu et al.,

"Department of Computer Science, University of Oxford, Ox-
ford, UK. *Department of Computer Science and Technology,
University of Cambridge, Cambridge, UK. Correspondence to:
Nikolaj Banke Jensen <nikolaj.jensen@cs.ox.ac.uk>, Jamie Vi-
cary <jamie.vicary @cl.cam.ac.uk>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2022), video generation (Ma et al., 2020; Liu et al., 2021),
sorting algorithms (Tambouratzis, 1999), compression al-
gorithms (Namphol et al., 1996; Liu et al., 2021), image
denoising (Ilesanmi & Ilesanmi, 2021; Liu et al., 2021; Mao
et al., 2023), and image generation (Liu et al., 2021), among
others.

Some data transformation tasks admit only idempotent solu-
tions (e.g., sorting), whilst other tasks admit no idempotent
solutions (e.g., rotating an image by 90°). This work is con-
cerned with a class of data transformation tasks which has
both idempotent and non-idempotent solutions and where
idempotency might be a desirable property. For example,
in Section 3 we study idempotency in generative networks
where it is the formal requirement of one-step inference, but
also denoising and image augmentation (e.g., application of
effect-filters) are examples of tasks where idempotent solu-
tions may be desirable (Liu et al., 2021; Mao et al., 2023).
Since solutions are not inherently idempotent in this class,
we explore actively enforcing idempotency as a component
of the loss function used in training.

In this paper we are primarily concerned with networks
fo : R™ — R™, where 6 is a collection of weight parame-
ters. The condition that fg is idempotent is the following,
forallx € R™:

fo(x) = fo(fo(x)). (1)

If fo(x) = Wx (a single-layer, fully-connected network
with no bias and the identity activation function) where
W € R™™" is the weight matrix, then condition (1) reduces
to the familiar notion from linear algebra where W = W2
and eigenvalues of W are either O or 1. Condition (1) also
gives the correct notion for non-linear networks acting as
idempotent projections, and can be optimized using a simple
mean-squared error loss, where x € R™:
L Ly ? 2

idem (%) = — ; (folfo(x)) = fo(x))". (@
As we show in Section 3, minimizing this loss using canon-
ical gradient descent can yield relatively poor improve-
ment in the idempotent loss. Additionally, due to the sec-
ondary application of fg the number of terms in the gradient
VoLigem grows exponentially in the number of layers if
memoization is not used, making the approach computation-
ally expensive for certain architectures. If memoization is

Enforcing Idempotency in Neural Networks

used, then this can be reduced to linear growth, as discussed
in Section 3.3.

In this work, we propose an alternative method for train-
ing neural networks to satisfy condition (1). Using ideas
from Perturbation Theory (Kato, 1995) we derive a function
g which solves K’ = g(K) such that if K € R™*" is an
“almost” idempotent matrix, then K’ € R™*" is perfectly
idempotent (i.e., (K')? = K’). In this work, we focus on
one such function:

g(K) = 3K? — 2K?. 3)

Although we assume K is close to idempotent, we show
that in practice g can be used to derive matrices which
are within machine precision of perfect idempotency even
when the input matrix K is relatively far from idempotent.
At a high level, this process is based on a recurrence rela-
tion K’ = K 4+ v(g(K) — K), taking small +-sized steps
in the direction of g(K). While this recurrence relation
derives idempotent matrices—and can therefore be used to
train single-layer networks with identity activations to be
idempotent—we also give a more general application of
Eq. (3) as a modification of the backpropagation algorithm,
yielding an architecture agnostic and efficient algorithm for
finding idempotent networks. As we will see, this modifi-
cation in general not only leads to significantly improved
idempotent error reduction but also explores the loss land-
scape differently from the canonical approach.

In Section 2.1 we give a detailed description of the method
used to derive Eq. (3) and alternative solutions. We also
show that while there exists non-idempotent fixed points
to Eq. (3), these points are repelling under the recurrence
relation K’ = K + v(g(K) — K) for 0 < ~ < 1, giving
credence to the use of such a recurrence relation in practice.
Finally, in Section 2.3 we derive a full training scheme for
training arbitrary neural network architectures of the form
fo : R™ — R™. In Section 3, we present experimental data
for a variety of fully-connected network architectures, show-
ing that our method outperforms ordinary backpropagation
under varied conditions. We also replicate the results of
Shocher et al. 2023 by applying our method on a U-net style
DCGAN model to successfully create generative networks
for the MNIST and CelebA datasets. Lastly, Sections 4 and
5 discuss how our method distinguishes itself from related
approaches as well as future work.

2. Method

2.1. An idea from Perturbation Theory

Perturbation Theory comprises methods for finding an ap-
proximate solution to a problem by starting from the exact
solution of a related, simpler problem and adding successive
“perturbations” to the system. It is a diverse set of tools used

KI

05 0.5 1 1

Figure 1. Plot of K® = 3K2 2K3 in the case K is scalar.

to reason about complex dynamical systems often used in
physics and quantum chemistry (Hirschfelder et al., 1964).
We refer the reader to Kato 1995 for a detailed treatment of
the topic.

We first define the term near-idempotent used throughout:

Definition 2.1 (Near-idempotent to order n). Let the ma-
trix P € R™*™ satisfy P = P2. Let D € R™*™ be arbi-
trary (e.g., noise) where there exists some n € N such that
D"t has coefficients with absolute value below € < 1.
We say that K = P + D is near-idempotent to order n.

Using Definition 2.1 we may define the following ansatz in
terms of a near-idempotent K:

K =K+ aK? +- -+ oK. 4)

This poses K’ as the linear combination of higher or-
ders of near-idempotent matrices. If we further constrain
(K’)? — K’ = 0, the result is a system of polynomial equa-
tions in variables «;. Importantly, for all equations of the
system, any term in which D appears at least n + 1 times
can be considered “negligible” and ignored. This simplifi-
cation vastly reduces the problem and allows approximate
solutions. The coefficients a; can be thought of as parame-
terizing a projection g such that K’ = ¢g(K) for an arbitrary
near-idempotent K. The requirement that K’ be idempotent
and that K is only near-idempotent implies that a solution
g is a projection onto the manifold of idempotent matrices;
we call g an idempotent corrector as it must “make K
idempotent”.

Note that Definition 2.1 places no restrictions on the distri-
bution from which D is drawn, hence K and the underlying
P have no presumed relation. Additionally, the equation 4
above also places no assumptions on the relationship be-
tween P and K’.

In the case when n = 1 we consider D? ~ 0 and the ex-
pression (K’)? — K’ = 0 can be expanded and reduced

Enforcing Idempotency in Neural Networks

by recursively applying the following assumptions, for all
X,Y, Z matrices:

D?2~0, P?=P, XDYDZ=~O0. 3)

When j < 2, there exists no solutions for ;. When 7 = 3
there is exactly one solution when «; = 0, as = 3 and
a3 = —2, which gives precisely g as defined in Eq. (3).
For 7 > 3 there exists families of solutions (see Appendix
A), but we consider primarily the case when j = 3 as this
requires fewer higher-order terms of K and is therefore
generally less costly to evaluate for concrete values. Note
also that in general, solving the above system of polynomial
equations is NP-hard or worse, but this is not a concern for
us in practice as the number of variables j is low (so all
constraints have low degree also).

2.2. Fixed Points and Stability Analysis

Undoubtedly, a required property of any idempotent correc-
tor g is that every idempotent matrix is a fixed point, but
it may also be desirable to find if any non-idempotent ma-
trices are fixed points. Concretely, we wish to characterize
solutions to K = 3K? — 2K3.

In general, we place no restrictions on the matrix
K € R™*™_ In particular, it might not be directly diag-
onalizable. It is well known, however, that for every square
matrix K there exists an invertible matrix P and a Jor-
dan normal form (H. Weintraub, 2009) J € C™*™ of
K € R™*™ gsuch that K = PJP~!. From this the dual
problem,

J=3J%2-2J°, (6)

can be constructed. The block-diagonal structure of J im-
poses up to four equations per block of size (k x k) (see
Appendix B):

A=3)\2—2)\3 (7)

1=06X—06)2 Only when k& > 2. (8)
0=3-—6X Only when k£ > 3. 9
0=0-2 Only when k > 4. (10)

Clearly, this system of equations is inconsistent when k& > 2,
hence algebraic multiplicity and geometric multiplicity of
each eigenvalue have to be equal. This implies that J is
diagonalizable for any fixed point K. Furthermore, the
solutions which satisfy only Eq. (7) are:

A€ {0,0.5,1}. (11)

Therefore, any fixed point of K = 3K? — 2K? must have
eigenvalues in this set. Consequently, all idempotent ma-
trices are fixed points, but there exists also non-idempotent
fixed points.

Although the initial derivation of g(K) = 3K? — 2K? re-
lies on K being near-idempotent to the first order, we
consider more generally the behaviour of g around the
fixed points when applied repeatedly as a recurrence re-
lation. Let h(\) = 3A% — 2\3 and observe its derivative
R/(X\) = 6 — 6A2. Then, for each fixed point of g we have

h'(0)=0, R(05)=15 #H(1)=0 (12)

Since |h/(A)] < 1 for A € {0, 1} these points are attracting
whilst |A/(A)| > 1 for A = 0.5, thus this point is repelling.

Figure 2. 10-time recursive application of A(\) = 32
onto 0, while orange areas denote points converging onto 1.

Real

23 for each point on the complex plane. Black areas denote points converging

Enforcing Idempotency in Neural Networks

In other words, if the idempotent correctgr applied as term “Modi ed Backpropagation ” to refer to the canon-
a recurrence relation o, converges at some poit®, ical backpropagation algorithm with the rule (15) applied
thenK °will be approximately idempotent unlekshas an appropriately when computing gradients.

eigenvalue of exactig:5. One way to understand why this approach is sensible is

Furthermore, Figure 2 shows the result of applying the idemto consider that in the linear case we obtain exactly the
potent corrector recursively 10 times for each point on thedirectional informatior(3K 2 2K 3 K) of Eq. 13 from the
complex plane. The attracting regions arodahdl are previous section. In the case whienis non-linear we wish
large, hence any matrix that is “reasonably close” to idemfor the network to act in an idempotent way around inputs
potent will be projected onto a (within machine precision)taken from the training distribution with the expectation that
idempotent matrix. enough such points yields idempotent behaviour for the rest
Whilst this analysis technically only applies in the lin- © the distribution. We can approximately achieve this by
. : .enforcing the idempotency of the Jacobianatx. In our

earized setting, we propose to also apply the method in

. ; i . . scheme this would give the objective
non-linear settings using the following recurrence relation;

for 0 1 (B3 (x)2 23 (x)® J (x)x (16)

K%= K+ (g(K) K): (13) which can be seen exactly as the linearized counterpart to
f (x). Therefore, under the assumption thatehaves

locally linearly we should expect the training scheme pre-

sented in this section to also optimize for idempotency in

the non-linear setting at least around the training samples.

This has the effect of taking smallsized steps in the direc-
tion of g at every time point.

2.3. Deriving a Training Scheme

. L . . In practice, the de nition (15) can be implemented in com-
Grac:c[[ent-based 0pt|m||zat|(]3n tet(?hnlquet; uz.e thf'gracli!e?t on machine learning frameworks, such as Jax and Py-
an otten non-convex foss function as the directional INforrq, .., 55 5 yser-de ned automatic differentiation rule (see
mation used to update the hypothesis at each time step. ThE :

S . ppendix C).
highlights a core difference between our approach and con-
ventional gradient-based approaches, since the recurrence .
relation derived above (and shown in Figure 1) exactly de3. EXperimental Results
scribes the “direction” to move in to reduce idempotent erro
Our method need onlgvaluateg — nding its derivative is
unimportant.

"To evaluate the training scheme suggested in Section 2.3
we compare relative performance between the two methods:
“Ordinary Backpropagation” with the quanti@%(y»
Consider a neural networfk : R™ ! R™ together with resolved at runtime by automatic differentiation, and “Mod-
its application to inpuk 2 R™, denotedy = f (x). We ied Backpropagation” with the modi ed backpropagation
might then consider the recurrence relation in Eg. (3) in theyle for &L _ieem /) Tq demonstrate the exibility of the

following form: approach, we report results for four diverse MLP-style net-
works, as described in Table 1.
yo=3f (y) 2f (f () (14)
The dataset used for training in this section is drawn from

This describes a desired change in the output of the nef normal distribution with meaf and standard deviation

work which we denote f (x) = y° . Inotherwords, ;1 To prevent concerns about over tting, the distribution is
f (x) describes the changeynwhich movesy towards sampled i.i.d. at each epoch during training. Furthermore,

an idempotent projection much in the same way that thg, paich size 01000is used, although comparable results

quantity @+) describes the direction which reduces have been found for batch sizes betw82mnd10 000 The
the idempotent loss function in Eq. (2). A central ideaoptimizer used is SGD.

presented in this work is therefore the de nition
@L igem (¥)) 3.1. Qualitative Differences

f (x) (15) :
@ In this section we present suggestive evidence that Modi-

as an alternative quantity to the traditional, analytical solu-ed Backpropagation searches the solution space differently

tion to &L e) g complete the scheme, we considerfrom Ordinary Backpropagation.

how a change in the outpytcan be propagated to a change For purposes of visualization, we employ the methods of Li
in the parameters of f . This, however, is a straightfor- et al. 2018 to compare the optimizer trajectories of Modi-
ward application of the chain rule as it is calculated con-ed Backpropagation and Ordinary Backpropagation. Con-
ventionally in backpropagation. In this paper we use thecretely, we train a copy of the same network with either

4

Enforcing Idempotency in Neural Networks

Table 1.Four neural networks for testing. Each “Linaarfn)”
block is parameterized by its input dimensiorand its output
dimensionm, corresponding to the underlyingg 2 R™ "
weight matrix. Every block has an associated bias vector and
LeakyReLUQ:2) activation function. B1 represents a trivial net-
work, B2 represents a relatively deep network, B3 represents a
relatively wide network, and B4 represents a more realistic net-

work. Figure 4.Absolute cosine similarity of gradients over time of a
’ Identier | Architecture ‘ NoO. Parameters‘ representative_ trainin_g run with model B_2. “Along OB” optimizes
the network with Ordinary Backpropagation and compares at each

Bl L!near(5, 5) 30 timepoint with suggested gradient from Modi ed Backpropagation.
B2 Linear(128, 256) 263296 “Along MB” optimizes the network with Modi ed Backpropagation
Linear(256, 256) and compares with suggested gradient from Ordinary Backpropa-
Linear(256, 256) gation. “Separate” compares gradients of each optimizer as they
Linear(256, 256) independently optimize the network. Gradients suggested by Mod-
Linear(256, 128) i ed Backpropagation remains signi cantly different from those
B3 Linear(4096, 1024) 8393728 suggested by Ordinary Backpropagation.
Linear(1024, 4096)
B4 Linear(784, 1024) 4509456
Linear(1024, 2048)
Linear(2048, 784)

algorithm and record model parametef$®® and °B at

epocht. A PCA analysis is then performed over the rela-

i ; B oB ;

Flve C_hange n parz_ameters froné" and ¢* (which are run with model B2. The network is optimized independently by

identical), from which we select the two most explanatory :

di . Lastly the | land d trai helther algorithm at optimal learning rates (Figure 6). Modi ed
irections. Lastly, the loss landscape and trajectory pat éackpropagation gives consistently stronger gradient signal than

Ordinary Backpropagation.

Figure 5.Norm of gradients over time of a representative training

MB and ©B are projected onto the selected dimensions.
An example is shown in Figure 3 (and Appendix H).

Quialitative evaluation show that Modi ed and Ordinary
Backpropagation often differ signi cantly in projected tra-
jectories across the two most explanatory directions, but
this is not always the case.@, B4 in Figure 16). Addi-
tionally, optimization trajectories for Modi ed Backprop-
agation can be explained by projection onto two direction
with more tharB0% variance explained, indicating that it
exhibits the same behaviour as Ordinary Backpropagation
which has previously been suggested to largely operate in
low-dimensional subspaces (Li et al., 2018; Song et al.,
2024). One should note, however, that the loss surface is
here represented under a dramatic dimensionality reduction
which limits further conclusions.

We now investigate how the gradients produced by Modi ed
Figure 3.Representative projections of the optimizer trajectoriesBackpropagation differ from those produced by Ordinary
over 2500 epochs of either algorithm on the B2 model at optimaBackpropagation. We give here an analysis over a single
learning rates (Figure 6). Total variance captured i87:8% with training run on network B2, but similar results hold for all
cosine similarity of PC1 and PC2 less the® 10 °. Optimizer ~ networks in Table 1 over repetitions of the experiment. As
trajectory of Modi ed Backpropagation deviates signi cantly from Figure 4 shows, gradients suggested by either algorithm re-
Ordinary Backpropagation. main relatively dissimilar throughout training, which further

Enforcing Idempotency in Neural Networks

indicates a difference in the expected optimization trajectory3.2. Quantitative Differences

Furthermore, as evidenced by Figures 3 and 5, Modi ec\N . luati f1h lati f f Mod
Backpropagation travels fastér(, gives stronger gradient . € now give an evaluation of the relalive et cacy ot Mod-

. : : : d Backpropagation to Ordinary Backpropagation. As
signal) than Ordinary Backpropagation, even when o timal © n)
Iegrni%g rates are SE):/IectedF}orpbc?th algorithms. P shown in Figure 6, for networks B2-B4 Modi ed Backprop-

agation achieves signi cantly lower absolute idempotent
error on average at lower learning rate. For network B3
the difference is more than one order of magnitude. As

Figure 6.Average of 10 runs of each algorithm for a variety of learning rates. Networks are randomly initialized and trained
for 2500epochs. Runs which did not return a network with lower idempotent error than the initial value are discarded, and
the average is over remaining runs. For networks B3 and B4, learningerade22 and> 0:52 respectively had no runs

with improvement in error. For Modi ed Backpropagation on B1, some runs resulted in approxirfamjch, due to
oating-point imprecision, results in the error spikes.

Figure 7.0n networks B2 and B3, the average idempotent error across 10 runs for each learning rate is reported for each

algorithm. Each column of graphs represents one algorithm. Modi ed Backpropagation achieves lower idempotent error at

lower learning rates than Ordinary Backpropagation. The biggest relative improvement between algorithms occurs in the rst
500epochs.

Enforcing Idempotency in Neural Networks

the tested networks represent varying architectures with datasets. LeD denote the distribution of dataset samples,
commonly used activation function, these results suggesthile D°is a distribution from which noise is sampled. For
that Modi ed Backpropagation fares well in a variety of MNIST we useD®= N (0; 1) whilst for CelebA we use a
training con gurations. distribution of noise with similar frequency-statistics as the

Although the dataset used here is i.i.d. samples drawn fronqataset’ following Shocher et al. 2023. Letbe a copy

: i L of the trainable weights at each time step, wher€ is

a Gaussiam (0; 1), we observe similar results when data .) -
S . . .detached from the computational graph. In this training

comes from other distributions, such as the uniform d'Str"scheme the loss function being ootimized is
butionU(k; k) for k 2 N. Following Shocher et al. 2023, ' 9op
we also observe similar results when applying a Fast Fourier L(; 9= Lec()
Transform to MNIST data, nding the mean and variance of + iLigem(: O+ Ligne (3 O a7)
each frequency, and then apply an inverse FFT to get noise _ ’ _ 9 ’ _ _
with similar frequency-statistics as the underlying dataset.To see why employing two copies of the weights is useful,

. . considerx;y) D andz D %and the individual loss
Whilst the above results are promising, a natural concern 'ﬁomponentS'

the quality of solutions produced. In particular, if a signi -
cant fraction of networks trained using Modi ed Backpropa- Lrec((X;y);)=ky f (X)kg (18)
gation have weights close to the null mat@ior the identity Ligem(z; ; 9= kf of (2) f (2)ke (19)
matrix | then the algorithm might not be practically useful. Lae (2 0= Kk (f o(@) f o(2)k (20)
We refer the reader to Appendix D which shows that the tight 15 !

norm of trained weight matrices in general is comparable t%or instance. the quantit@: wem (25 5 %) g only affected by
those found by Ordinary Backpropagation. ; o @ 0 hai
the inner application of above due to ° being detached
)) from the computational graph. The relationship between
3.3. Relative Computational Cost loss componentsigem andL gy is adversarial in nature.

Theoretical analysis shows that Modi ed BackpropagationThe major difference in this work from Shocher et al. 2023
and Ordinary Backpropagation both require on the ordefs that we use Modi ed Backpropagation for implementing
of O(k) matrix multiplications for &-layer MLP under poth L jyem and Lignt - As such, weevaluateboth loss
minimal memoization assumptions. In Appendix E we pro-components as the Mean Squared Error (MSE) instead of
vide the full analysis for this, as well as Figure 14 which the|_, loss, and we use the training scheme in Section 2.3
shows empirically that the wall-clock running time of both g perform the backwards pass (see also Appendix F). We
algorithms is roughly the same for the networks B1-4. use the same implementation fo. as above.

Whilst we provide analysis for the MLP case here, we exye have successfully replicated several results of Shocher
pect similar ndings for other architectures. Practically, the et a]. 2023 under this training scheme. In particular, Figure
major difference between Ordinary Backpropagation an@ shows qualitative examples of noise drawn fditbeing

Modi ed Backpropagation is the way gradients of the lossmapped to images resembling samples from the MNIST
with respect to the output of the network is computed. Ingng CelebA datasets. While outputs remain largely similar
Modi ed Backpropagation, we require only forward passespetween the rst and second application of the network, in
Of the network to CaICUIate th|S quantity, Wh||$t for Ordinary some cases we do also Observe the same “Self_correction" be_
Backpropagation one must also H&Y) due to the sec- haviour after the second application as observed by Shocher
ondary application of in the loss function (Eq. 2). Thus, etal. 2023, with some small defects in background, hairstyle
in implementations using memoization one should generallyand facial features being corrected. Figure 10 gives further
expect training time of both algorithms to differ only by a evidence for this, as we demonstrate the ability to recover
constant factor, whilst without memoization we generallyoriginal dataset images after various degradations have been
expect Modi ed Backpropagation to have a computationalapplied, such as noise, greyscale lters, and Gaussian blur
advantage. (see Appendix F for details).

In Figure 9 we visualize the effect of applying the trained
network to noise linearly interpolated between two clear
As mentioned, one of the motivating factors for actively MNIST samplesA ;B 2 R?® 28, \We again observe the
enforcing idempotency during training is to apply it as a secsecondary application of the network “cleaning up” images.
ondary optimization objective in conjunction with optimiz- For more uncurated examples of generated images, see Ap-
ing for a primary task. In this section we replicate the resultspendix G.

of Shocher et al. 2023 as we train a U-net style DCGANW o L -
. : ‘e note that qualitative results in this training scheme for
architecture (see Appendix F) on the MNIST and CeIebAboth Ordinary Backpropagation (as applied in Shocher et al.

3.4. Application to Generative Networks

7

