
Enforcing Idempotency in Neural Networks

Nikolaj Banke Jensen 1 Jamie Vicary 2

Abstract
In this work, we propose a new architecture-
agnostic method for training idempotent neu-
ral networks. An idempotent operator satisfies
f(x) = f(f(x)), meaning it can be applied itera-
tively with no effect beyond the first application.
Some neural networks used in data transformation
tasks, such as image generation and augmenta-
tion, can represent non-linear idempotent projec-
tions. Using methods from perturbation theory we
derive the recurrence relation K′ ← 3K2 − 2K3

for iteratively projecting a real-valued matrix K
onto the manifold of idempotent matrices. Our
analysis shows that for linear, single-layer MLP
networks this projection 1) has idempotent fixed
points, and 2) is attracting only around idempo-
tent points. We give an extension to non-linear
networks by considering our approach as a sub-
stitution of the gradient for the canonical loss
function, achieving an architecture-agnostic train-
ing scheme. We provide experimental results for
MLP- and CNN-based architectures with signif-
icant improvement in idempotent error over the
canonical gradient-based approach. Finally, we
demonstrate practical applications of the method
as we train generative networks on MNIST and
CelebA successfully using only a simple recon-
struction loss paired with our method.

1. Introduction
Using neural networks as data augmentation tools is becom-
ing more widespread in areas such as signal processing and
generative artificial intelligence. In particular, networks of
the form f : X → X , mapping data within the same space
X , are frequently used in image augmentation (Lu et al.,

1Department of Computer Science, University of Oxford, Ox-
ford, UK. 2Department of Computer Science and Technology,
University of Cambridge, Cambridge, UK. Correspondence to:
Nikolaj Banke Jensen <nikolaj.jensen@cs.ox.ac.uk>, Jamie Vi-
cary <jamie.vicary@cl.cam.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2022), video generation (Ma et al., 2020; Liu et al., 2021),
sorting algorithms (Tambouratzis, 1999), compression al-
gorithms (Namphol et al., 1996; Liu et al., 2021), image
denoising (Ilesanmi & Ilesanmi, 2021; Liu et al., 2021; Mao
et al., 2023), and image generation (Liu et al., 2021), among
others.

Some data transformation tasks admit only idempotent solu-
tions (e.g., sorting), whilst other tasks admit no idempotent
solutions (e.g., rotating an image by 90◦). This work is con-
cerned with a class of data transformation tasks which has
both idempotent and non-idempotent solutions and where
idempotency might be a desirable property. For example,
in Section 3 we study idempotency in generative networks
where it is the formal requirement of one-step inference, but
also denoising and image augmentation (e.g., application of
effect-filters) are examples of tasks where idempotent solu-
tions may be desirable (Liu et al., 2021; Mao et al., 2023).
Since solutions are not inherently idempotent in this class,
we explore actively enforcing idempotency as a component
of the loss function used in training.

In this paper we are primarily concerned with networks
fθ : Rn → Rn, where θ is a collection of weight parame-
ters. The condition that fθ is idempotent is the following,
for all x ∈ Rn:

fθ(x) = fθ(fθ(x)). (1)

If fθ(x) = Wx (a single-layer, fully-connected network
with no bias and the identity activation function) where
W ∈ Rn×n is the weight matrix, then condition (1) reduces
to the familiar notion from linear algebra where W = W2

and eigenvalues of W are either 0 or 1. Condition (1) also
gives the correct notion for non-linear networks acting as
idempotent projections, and can be optimized using a simple
mean-squared error loss, where x ∈ Rn:

Lidem(x) =
1

m

m∑
i=1

(
fθ(fθ(x))− fθ

(
x
))2

. (2)

As we show in Section 3, minimizing this loss using canon-
ical gradient descent can yield relatively poor improve-
ment in the idempotent loss. Additionally, due to the sec-
ondary application of fθ the number of terms in the gradient
∇θLidem grows exponentially in the number of layers if
memoization is not used, making the approach computation-
ally expensive for certain architectures. If memoization is

1



Enforcing Idempotency in Neural Networks

used, then this can be reduced to linear growth, as discussed
in Section 3.3.

In this work, we propose an alternative method for train-
ing neural networks to satisfy condition (1). Using ideas
from Perturbation Theory (Kato, 1995) we derive a function
g which solves K′ = g(K) such that if K ∈ Rn×n is an
“almost” idempotent matrix, then K′ ∈ Rn×n is perfectly
idempotent (i.e., (K′)2 = K′). In this work, we focus on
one such function:

g(K) = 3K2 − 2K3. (3)

Although we assume K is close to idempotent, we show
that in practice g can be used to derive matrices which
are within machine precision of perfect idempotency even
when the input matrix K is relatively far from idempotent.
At a high level, this process is based on a recurrence rela-
tion K′ = K+ γ(g(K)−K), taking small γ-sized steps
in the direction of g(K). While this recurrence relation
derives idempotent matrices—and can therefore be used to
train single-layer networks with identity activations to be
idempotent—we also give a more general application of
Eq. (3) as a modification of the backpropagation algorithm,
yielding an architecture agnostic and efficient algorithm for
finding idempotent networks. As we will see, this modifi-
cation in general not only leads to significantly improved
idempotent error reduction but also explores the loss land-
scape differently from the canonical approach.

In Section 2.1 we give a detailed description of the method
used to derive Eq. (3) and alternative solutions. We also
show that while there exists non-idempotent fixed points
to Eq. (3), these points are repelling under the recurrence
relation K′ = K+ γ(g(K)−K) for 0 ≤ γ ≤ 1, giving
credence to the use of such a recurrence relation in practice.
Finally, in Section 2.3 we derive a full training scheme for
training arbitrary neural network architectures of the form
fθ : Rn → Rn. In Section 3, we present experimental data
for a variety of fully-connected network architectures, show-
ing that our method outperforms ordinary backpropagation
under varied conditions. We also replicate the results of
Shocher et al. 2023 by applying our method on a U-net style
DCGAN model to successfully create generative networks
for the MNIST and CelebA datasets. Lastly, Sections 4 and
5 discuss how our method distinguishes itself from related
approaches as well as future work.

2. Method
2.1. An idea from Perturbation Theory

Perturbation Theory comprises methods for finding an ap-
proximate solution to a problem by starting from the exact
solution of a related, simpler problem and adding successive
“perturbations” to the system. It is a diverse set of tools used

−0.5 0.5 1 1.5

−1

1

2

K

K′

Figure 1. Plot of K0 = 3K2 � 2K3 in the case K is scalar.

to reason about complex dynamical systems often used in
physics and quantum chemistry (Hirschfelder et al., 1964).
We refer the reader to Kato 1995 for a detailed treatment of
the topic.

We first define the term near-idempotent used throughout:
Definition 2.1 (Near-idempotent to order n). Let the ma-
trix P ∈ Rm×m satisfy P = P2. Let D ∈ Rm×m be arbi-
trary (e.g., noise) where there exists some n ∈ N such that
Dn+1 has coefficients with absolute value below ϵ ≪ 1.
We say that K = P+D is near-idempotent to order n.

Using Definition 2.1 we may define the following ansatz in
terms of a near-idempotent K:

K′ = α1K+ α2K
2 + · · ·+ αjK

j . (4)

This poses K′ as the linear combination of higher or-
ders of near-idempotent matrices. If we further constrain
(K′)2 −K′ = 0, the result is a system of polynomial equa-
tions in variables αi. Importantly, for all equations of the
system, any term in which D appears at least n+ 1 times
can be considered “negligible” and ignored. This simplifi-
cation vastly reduces the problem and allows approximate
solutions. The coefficients αi can be thought of as parame-
terizing a projection g such that K′ = g(K) for an arbitrary
near-idempotent K. The requirement that K′ be idempotent
and that K is only near-idempotent implies that a solution
g is a projection onto the manifold of idempotent matrices;
we call g an idempotent corrector as it must “make K
idempotent”.

Note that Definition 2.1 places no restrictions on the distri-
bution from which D is drawn, hence K and the underlying
P have no presumed relation. Additionally, the equation 4
above also places no assumptions on the relationship be-
tween P and K′.

In the case when n = 1 we consider D2 ≈ 0 and the ex-
pression (K′)2 −K′ = 0 can be expanded and reduced

2



Enforcing Idempotency in Neural Networks

by recursively applying the following assumptions, for all
X,Y,Z matrices:

D2 ≈ 0, P2 = P, XDYDZ ≈ 0. (5)

When j ≤ 2, there exists no solutions for αi. When j = 3
there is exactly one solution when α1 = 0, α2 = 3 and
α3 = −2, which gives precisely g as defined in Eq. (3).
For j > 3 there exists families of solutions (see Appendix
A), but we consider primarily the case when j = 3 as this
requires fewer higher-order terms of K and is therefore
generally less costly to evaluate for concrete values. Note
also that in general, solving the above system of polynomial
equations is NP-hard or worse, but this is not a concern for
us in practice as the number of variables j is low (so all
constraints have low degree also).

2.2. Fixed Points and Stability Analysis

Undoubtedly, a required property of any idempotent correc-
tor g is that every idempotent matrix is a fixed point, but
it may also be desirable to find if any non-idempotent ma-
trices are fixed points. Concretely, we wish to characterize
solutions to K = 3K2 − 2K3.

In general, we place no restrictions on the matrix
K ∈ Rm×m. In particular, it might not be directly diag-
onalizable. It is well known, however, that for every square
matrix K there exists an invertible matrix P and a Jor-
dan normal form (H. Weintraub, 2009) J ∈ Cm×m of
K ∈ Rm×m such that K = PJP−1. From this the dual
problem,

J = 3J2 − 2J3, (6)

can be constructed. The block-diagonal structure of J im-
poses up to four equations per block of size (k × k) (see
Appendix B):

λ = 3λ2 − 2λ3 (7)

1 = 6λ− 6λ2 Only when k ≥ 2. (8)
0 = 3− 6λ Only when k ≥ 3. (9)
0 = 0− 2 Only when k ≥ 4. (10)

Clearly, this system of equations is inconsistent when k ≥ 2,
hence algebraic multiplicity and geometric multiplicity of
each eigenvalue have to be equal. This implies that J is
diagonalizable for any fixed point K. Furthermore, the
solutions which satisfy only Eq. (7) are:

λ ∈ {0, 0.5, 1}. (11)

Therefore, any fixed point of K = 3K2 − 2K3 must have
eigenvalues in this set. Consequently, all idempotent ma-
trices are fixed points, but there exists also non-idempotent
fixed points.

Although the initial derivation of g(K) = 3K2 − 2K3 re-
lies on K being near-idempotent to the first order, we
consider more generally the behaviour of g around the
fixed points when applied repeatedly as a recurrence re-
lation. Let h(λ) = 3λ2 − 2λ3 and observe its derivative
h′(λ) = 6λ− 6λ2. Then, for each fixed point of g we have

h′(0) = 0, h′(0.5) = 1.5, h′(1) = 0. (12)

Since |h′(λ)| < 1 for λ ∈ {0, 1} these points are attracting
whilst |h′(λ)| > 1 for λ = 0.5, thus this point is repelling.

Figure 2. 10-time recursive application of h(λ) = 3λ2 � 2λ3 for each point on the complex plane. Black areas denote points converging
onto 0, while orange areas denote points converging onto 1.

3



Enforcing Idempotency in Neural Networks

In other words, if the idempotent correctorg, applied as
a recurrence relation onK , converges at some pointK 0,
thenK 0 will be approximately idempotent unlessK has an
eigenvalue of exactly0:5.

Furthermore, Figure 2 shows the result of applying the idem-
potent corrector recursively 10 times for each point on the
complex plane. The attracting regions around0 and1 are
large, hence any matrix that is “reasonably close” to idem-
potent will be projected onto a (within machine precision)
idempotent matrix.

Whilst this analysis technically only applies in the lin-
earized setting, we propose to also apply the method in
non-linear settings using the following recurrence relation,
for 0 �  � 1:

K 0 = K +  (g(K ) � K ): (13)

This has the effect of taking small -sized steps in the direc-
tion of g at every time point.

2.3. Deriving a Training Scheme

Gradient-based optimization techniques use the gradient of
an often non-convex loss function as the directional infor-
mation used to update the hypothesis at each time step. This
highlights a core difference between our approach and con-
ventional gradient-based approaches, since the recurrence
relation derived above (and shown in Figure 1) exactly de-
scribes the “direction” to move in to reduce idempotent error.
Our method need onlyevaluateg – �nding its derivative is
unimportant.

Consider a neural networkf � : Rm ! Rm together with
its application to inputx 2 Rm , denotedy = f � (x). We
might then consider the recurrence relation in Eq. (3) in the
following form:

y 0 = 3 f � (y ) � 2f � (f � (y )) (14)

This describes a desired change in the output of the net-
work which we denote� f � (x) = y 0 � y . In other words,
� f � (x) describes the change iny which movesy towards
an idempotent projection much in the same way that the
quantity @(�L idem (y ))

@y describes the direction which reduces
the idempotent loss function in Eq. (2). A central idea
presented in this work is therefore the de�nition

@(�L idem (y ))
@y

� � f � (x) (15)

as an alternative quantity to the traditional, analytical solu-
tion to @(�L idem (y ))

@y . To complete the scheme, we consider
how a change in the outputy can be propagated to a change
in the parameters� of f � . This, however, is a straightfor-
ward application of the chain rule as it is calculated con-
ventionally in backpropagation. In this paper we use the

term “Modi�ed Backpropagation ” to refer to the canon-
ical backpropagation algorithm with the rule (15) applied
appropriately when computing gradients.

One way to understand why this approach is sensible is
to consider that in the linear case we obtain exactly the
directional information(3K 2� 2K 3� K ) of Eq. 13 from the
previous section. In the case whenf � is non-linear we wish
for the network to act in an idempotent way around inputs
taken from the training distribution with the expectation that
enough such points yields idempotent behaviour for the rest
of the distribution. We can approximately achieve this by
enforcing the idempotency of the JacobianJ � atx. In our
scheme this would give the objective

(3J � (x)2 � 2J � (x)3 � J � (x))x (16)

which can be seen exactly as the linearized counterpart to
� f � (x). Therefore, under the assumption thatf � behaves
locally linearly we should expect the training scheme pre-
sented in this section to also optimize for idempotency in
the non-linear setting at least around the training samples.

In practice, the de�nition (15) can be implemented in com-
mon machine learning frameworks, such as Jax and Py-
Torch as a user-de�ned automatic differentiation rule (see
Appendix C).

3. Experimental Results

To evaluate the training scheme suggested in Section 2.3
we compare relative performance between the two methods:
“Ordinary Backpropagation” with the quantity@(�L idem (y ))

@y
resolved at runtime by automatic differentiation, and “Mod-
i�ed Backpropagation” with the modi�ed backpropagation
rule for @(�L idem (y ))

@y . To demonstrate the �exibility of the
approach, we report results for four diverse MLP-style net-
works, as described in Table 1.

The dataset used for training in this section is drawn from
a normal distribution with mean0 and standard deviation
1. To prevent concerns about over�tting, the distribution is
sampled i.i.d. at each epoch during training. Furthermore,
a batch size of1000is used, although comparable results
have been found for batch sizes between32and10 000. The
optimizer used is SGD.

3.1. Qualitative Differences

In this section we present suggestive evidence that Modi-
�ed Backpropagation searches the solution space differently
from Ordinary Backpropagation.

For purposes of visualization, we employ the methods of Li
et al. 2018 to compare the optimizer trajectories of Modi-
�ed Backpropagation and Ordinary Backpropagation. Con-
cretely, we train a copy of the same network with either

4



Enforcing Idempotency in Neural Networks

Table 1.Four neural networks for testing. Each “Linear(n, m)”
block is parameterized by its input dimensionn and its output
dimensionm, corresponding to the underlyingW 2 Rm � n

weight matrix. Every block has an associated bias vector and
LeakyReLU(0:2) activation function. B1 represents a trivial net-
work, B2 represents a relatively deep network, B3 represents a
relatively wide network, and B4 represents a more realistic net-
work.

Identi�er Architecture No. Parameters
B1 Linear(5, 5) 30
B2 Linear(128, 256)

Linear(256, 256)
Linear(256, 256)
Linear(256, 256)
Linear(256, 128)

263 296

B3 Linear(4096, 1024)
Linear(1024, 4096)

8 393 728

B4 Linear(784, 1024)
Linear(1024, 2048)
Linear(2048, 784)

4 509 456

algorithm and record model parameters� MB
t and� OB

t at
epocht. A PCA analysis is then performed over the rela-
tive change in parameters from� MB

0 and� OB
0 (which are

identical), from which we select the two most explanatory
directions. Lastly, the loss landscape and trajectory paths

Figure 3.Representative projections of the optimizer trajectories
over 2500 epochs of either algorithm on the B2 model at optimal
learning rates (Figure 6). Total variance captured is> 97:8% with
cosine similarity of PC1 and PC2 less than1:0 � 10� 6 . Optimizer
trajectory of Modi�ed Backpropagation deviates signi�cantly from
Ordinary Backpropagation.

Figure 4.Absolute cosine similarity of gradients over time of a
representative training run with model B2. “Along OB” optimizes
the network with Ordinary Backpropagation and compares at each
timepoint with suggested gradient from Modi�ed Backpropagation.
“Along MB” optimizes the network with Modi�ed Backpropagation
and compares with suggested gradient from Ordinary Backpropa-
gation. “Separate” compares gradients of each optimizer as they
independently optimize the network. Gradients suggested by Mod-
i�ed Backpropagation remains signi�cantly different from those
suggested by Ordinary Backpropagation.

Figure 5.Norm of gradients over time of a representative training
run with model B2. The network is optimized independently by
either algorithm at optimal learning rates (Figure 6). Modi�ed
Backpropagation gives consistently stronger gradient signal than
Ordinary Backpropagation.

� MB
t and� OB

t are projected onto the selected dimensions.
An example is shown in Figure 3 (and Appendix H).

Qualitative evaluation show that Modi�ed and Ordinary
Backpropagation often differ signi�cantly in projected tra-
jectories across the two most explanatory directions, but
this is not always the case (e.g., B4 in Figure 16). Addi-
tionally, optimization trajectories for Modi�ed Backprop-
agation can be explained by projection onto two direction
with more than90%variance explained, indicating that it
exhibits the same behaviour as Ordinary Backpropagation
which has previously been suggested to largely operate in
low-dimensional subspaces (Li et al., 2018; Song et al.,
2024). One should note, however, that the loss surface is
here represented under a dramatic dimensionality reduction
which limits further conclusions.

We now investigate how the gradients produced by Modi�ed
Backpropagation differ from those produced by Ordinary
Backpropagation. We give here an analysis over a single
training run on network B2, but similar results hold for all
networks in Table 1 over repetitions of the experiment. As
Figure 4 shows, gradients suggested by either algorithm re-
main relatively dissimilar throughout training, which further

5



Enforcing Idempotency in Neural Networks

indicates a difference in the expected optimization trajectory.
Furthermore, as evidenced by Figures 3 and 5, Modi�ed
Backpropagation travels faster (i.e., gives stronger gradient
signal) than Ordinary Backpropagation, even when optimal
learning rates are selected for both algorithms.

3.2. Quantitative Differences

We now give an evaluation of the relative ef�cacy of Mod-
i�ed Backpropagation to Ordinary Backpropagation. As
shown in Figure 6, for networks B2-B4 Modi�ed Backprop-
agation achieves signi�cantly lower absolute idempotent
error on average at lower learning rate. For network B3
the difference is more than one order of magnitude. As

Figure 6.Average of 10 runs of each algorithm for a variety of learning rates. Networks are randomly initialized and trained
for 2 500epochs. Runs which did not return a network with lower idempotent error than the initial value are discarded, and
the average is over remaining runs. For networks B3 and B4, learning rates> 0:22 and> 0:52 respectively had no runs
with improvement in error. For Modi�ed Backpropagation on B1, some runs resulted in approximately0 which, due to
�oating-point imprecision, results in the error spikes.

Figure 7.On networks B2 and B3, the average idempotent error across 10 runs for each learning rate is reported for each
algorithm. Each column of graphs represents one algorithm. Modi�ed Backpropagation achieves lower idempotent error at
lower learning rates than Ordinary Backpropagation. The biggest relative improvement between algorithms occurs in the �rst
� 500epochs.

6



Enforcing Idempotency in Neural Networks

the tested networks represent varying architectures with a
commonly used activation function, these results suggest
that Modi�ed Backpropagation fares well in a variety of
training con�gurations.

Although the dataset used here is i.i.d. samples drawn from
a GaussianN (0; 1), we observe similar results when data
comes from other distributions, such as the uniform distri-
butionU(� k; k) for k 2 N. Following Shocher et al. 2023,
we also observe similar results when applying a Fast Fourier
Transform to MNIST data, �nding the mean and variance of
each frequency, and then apply an inverse FFT to get noise
with similar frequency-statistics as the underlying dataset.

Whilst the above results are promising, a natural concern is
the quality of solutions produced. In particular, if a signi�-
cant fraction of networks trained using Modi�ed Backpropa-
gation have weights close to the null matrix0 or the identity
matrix I then the algorithm might not be practically useful.
We refer the reader to Appendix D which shows that the
norm of trained weight matrices in general is comparable to
those found by Ordinary Backpropagation.

3.3. Relative Computational Cost

Theoretical analysis shows that Modi�ed Backpropagation
and Ordinary Backpropagation both require on the order
of O(k) matrix multiplications for ak-layer MLP under
minimal memoization assumptions. In Appendix E we pro-
vide the full analysis for this, as well as Figure 14 which
shows empirically that the wall-clock running time of both
algorithms is roughly the same for the networks B1-4.

Whilst we provide analysis for the MLP case here, we ex-
pect similar �ndings for other architectures. Practically, the
major difference between Ordinary Backpropagation and
Modi�ed Backpropagation is the way gradients of the loss
with respect to the output of the network is computed. In
Modi�ed Backpropagation, we require only forward passes
of the network to calculate this quantity, whilst for Ordinary
Backpropagation one must also �nd@f� (y )

@y due to the sec-
ondary application off in the loss function (Eq. 2). Thus,
in implementations using memoization one should generally
expect training time of both algorithms to differ only by a
constant factor, whilst without memoization we generally
expect Modi�ed Backpropagation to have a computational
advantage.

3.4. Application to Generative Networks

As mentioned, one of the motivating factors for actively
enforcing idempotency during training is to apply it as a sec-
ondary optimization objective in conjunction with optimiz-
ing for a primary task. In this section we replicate the results
of Shocher et al. 2023 as we train a U-net style DCGAN
architecture (see Appendix F) on the MNIST and CelebA

datasets. LetD denote the distribution of dataset samples,
while D0 is a distribution from which noise is sampled. For
MNIST we useD0 = N (0; 1) whilst for CelebA we use a
distribution of noise with similar frequency-statistics as the
dataset, following Shocher et al. 2023. Let� 0 be a copy
of the trainable weights� at each time step, where� 0 is
detached from the computational graph. In this training
scheme, the loss function being optimized is

L (� ; � 0) = � r L rec (� )

+ � i L idem (� ; � 0) + � r L tight (� ; � 0):
(17)

To see why employing two copies of the weights is useful,
consider(x; y � ) � D andz � D 0 and the individual loss
components:

L rec ((x ; y � ); � ) = ky � � f � (x)k1 (18)

L idem (z; � ; � 0) = kf � 0(f � (z)) � f � (z)k1 (19)

L tight (z; � ; � 0) = �k f � (f � 0(z)) � f � 0(z)k1 (20)

For instance, the quantity@L idem (z;� ;� 0)
@� is only affected by

the inner application off above due to� 0 being detached
from the computational graph. The relationship between
loss componentsL idem andL tight is adversarial in nature.

The major difference in this work from Shocher et al. 2023
is that we use Modi�ed Backpropagation for implementing
both L idem and L tight . As such, weevaluateboth loss
components as the Mean Squared Error (MSE) instead of
theL 1 loss, and we use the training scheme in Section 2.3
to perform the backwards pass (see also Appendix F). We
use the same implementation forL rec as above.

We have successfully replicated several results of Shocher
et al. 2023 under this training scheme. In particular, Figure
8 shows qualitative examples of noise drawn fromD0 being
mapped to images resembling samples from the MNIST
and CelebA datasets. While outputs remain largely similar
between the �rst and second application of the network, in
some cases we do also observe the same “self-correction” be-
haviour after the second application as observed by Shocher
et al. 2023, with some small defects in background, hairstyle
and facial features being corrected. Figure 10 gives further
evidence for this, as we demonstrate the ability to recover
original dataset images after various degradations have been
applied, such as noise, greyscale �lters, and Gaussian blur
(see Appendix F for details).

In Figure 9 we visualize the effect of applying the trained
network to noise linearly interpolated between two clear
MNIST samplesA ; B 2 R28� 28. We again observe the
secondary application of the network “cleaning up” images.
For more uncurated examples of generated images, see Ap-
pendix G.

We note that qualitative results in this training scheme for
both Ordinary Backpropagation (as applied in Shocher et al.

7




