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Introduction

We propose a new architecture-agnostic method for training idempotent neural networks. An operation
fθ : X → X is idempotent if it can be appliedmultiple times with no effect beyond the first application.

fθ(x) = fθ(fθ(x))

fθ−→ fθ−→
Some neural networks used in data transformation tasks, such as image generation and augmentation,
can represent non-linear idempotent projections. Training for idempotency using e.g. MSE-loss can lead
to poor performance (Figure 5). Using methods from Perturbation Theory, we derive a training scheme
that does not rely on gradients of a loss function to operatewhilst yielding better reduction in idempotent
error than the MSE baseline.

Lidem(x) = 1
m

m∑
i=1

(
fθ(fθ(x)) − fθ

(
x
))2

An Idea from Perturbation Theory

Near-idempotent to ordern. Let thematrixP ∈ Rm×m satisfyP = P2. LetD ∈ Rm×m be arbitrary
(e.g., noise) where there exists some n ∈ N such that Dn+1 has coefficients with absolute value below ε � 1.
We say that K = P + D is near-idempotent to order n.

If K is near idempotent to order 1, then up to some power j we define the ansatz
K′ = α1K + α2K2 + · · · + αjKj

IfwedemandK′ satisfies (K′)2−K′ = 0 (i.e., it is idempotent), thenweget a set of polynomial equations.
There is often no exact solution to these, but we find approximate solutions by recursively applying the
following assumptions for all X, Y, Z matrices:

D2 ≈ 0, P2 = P, XDYDZ ≈ 0.

This reduces the number of terms by an exponential factor. For low j the system can now be tractably
solved forαi, parameterizing amapping g such thatK′ = g(K). In otherwords, gmaps near idempotent
matrices to perfectly idempotent matrices.

The Solution and Its Properties

For j ≤ 2 there are no solutions to the above problem. For j = 3 there is a single solution,

g(K) = 3K2 − 2K3,

whilst for j > 3 there are families of solutions. We
consider the solution g when j = 3, and show that
taking γ-sized steps in direction of g(K) for
0 < γ ≤ 1, gives a recurrence relation with nice
properties:

All idempotent matrices are solutions,
Only idempotent matrices are attracting points,
Wide area of attraction around idempotent
points.
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Figure 1. Plot of g(K) = 3K2 − 2K3 in the case K is
scalar.
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Figure 2. 10-time recursive application of h(λ) = 3λ2 − 2λ3 for each point on the complex plane. Black areas denote points
converging onto 0, while orange areas denote points converging onto 1.

Deriving a Training Scheme

Consider a general network fθ and its application to input y = fθ(x), then our solution becomes:
y′ = 3fθ(y) − 2fθ(fθ(y))

This describes a desired change in the output of the network which we denote ∆fθ(x) = y′ − y. In
other words, ∆fθ(x) describes the change in y which moves y towards an idempotent projection. We
therefore define

∂(−Lidem(y))
∂y

≡ ∆fθ(x)

throughout the computational graph. We call ordinary backpropagation with this change “Modified
Backpropagation”. Modified Backpropagation has the same asymptotic computational cost as Ordi-
nary Backpropagation, but does not require a backwards pass.

Optimization Trajectories

Preliminary results show that Modified Backpropagation explores the loss landscape significantly differ-
ently compared to Ordinary Backpropagation.

Figure 3. Optimizer trajectory of Modified
Backpropagation deviates significantly from
that of Ordinary Backpropagation.

Figure 4.Top: Norm of gradients. Modified Backpropagation gives
stronger gradient signal than Ordinary Backpropagation. Bottom:
Absolute cosine similarity of gradients. “Along OB” trains with Ordinary
Backpropagation and compares with suggested gradient fromModified
Backpropagation. “AlongMB” is similar. Gradients suggested by
Modified Backpropagation remain significantly different from those
suggested by Ordinary Backpropagation.

Improved Error Reduction

Wetrain a variety ofMLParchitectureswithboth algorithmson randomsamples drawn fromnoise distri-
butions. Across wide/narrow and deep/shallow configurations,Modified Backpropagation outperforms
Ordinary Backpropagation at roughly the same computational cost.

Figure 5. Average absolute idempotent error across learning rates for each algorithm. Modified Backpropagation achieves
lower idempotent error at lower learning rates than Ordinary Backpropagation. The biggest relative improvement between
algorithms occurs in the first ∼500 epochs.

Use in Generative Networks

We replicate the results of Shocher et al. 2023 and train a DCGAN in a U-net configuration
(G(D(x)) = y) onMNISTandCelebAdatasets. The loss functionhas a reconstructionobjective and an
idempotent objective trained byModifiedBackpropagation. Weobserve comparable behaviour in correc-
tion of visual artefacts from first to second application of the network and out-of-distribution mapping.
Although results are inferior to SOTA, with more careful hyperparameter tuning we believe these could
improve significantly.

Figure 6. Generations of the U-net style DCGANmodel trained onMNIST and CelebA withModified Backpropagation
for optimizing idempotent and tightness losses.
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